Modulation of hippocampal glutamatergic transmission by ATP is dependent on adenosine a(1) receptors.
نویسندگان
چکیده
Excitatory glutamatergic synapses in the hippocampal CA1 region of rats are potently inhibited by purines, including adenosine, ATP, and ATP analogs. Adenosine A(1) receptors are known to mediate at least part of the response to adenine nucleotides, either because adenine nucleotides activate A(1) receptors directly, or activate them secondarily upon the nucleotides' conversion to adenosine. In the present studies, the inhibitory effects of adenosine, ATP, the purportedly stable ATP analog adenosine-5'-O-(3-thio)triphosphate (ATPgammaS), and cyclic AMP were examined in mice with a null mutation in the adenosine A(1) receptor gene. ATPgammaS displaced the binding of A(1)-selective ligands to intact brain sections and brain homogenates from adenosine A(1) receptor wild-type animals. In homogenates, but not in intact brain sections, this displacement was abolished by adenosine deaminase. In hippocampal slices from wild-type mice, purines abolished synaptic responses, but slices from mice lacking functional A(1) receptors showed no synaptic modulation by adenosine, ATP, cAMP, or ATPgammaS. In slices from heterozygous mice the dose-response curve for both adenosine and ATP was shifted to the right. In all cases, inhibition of synaptic responses by purines could be blocked by prior treatment with the competitive adenosine A(1) receptor antagonist 8-cyclopentyltheophylline. Taken together, these results show that even supposedly stable adenine nucleotides are rapidly converted to adenosine at sites close to the A(1) receptor, and that inhibition of synaptic transmission by purine nucleotides is mediated exclusively by A(1) receptors.
منابع مشابه
Modulation of Basal Glutamatergic Transmission by Nicotinic Acetylcholine Receptors in Rat Hippocampal Slices
Objective(s) Nicotinic acetylcholine receptors (nAChRs) regulate epileptiform activity and produce a sustained pro-epileptogenic action within the hippocampal slices. In the present study, we investigated the effect of nAChRs on evoked glutamatergic synaptic transmission in area CA3 and CA1 of rat hippocampal slices to identify possible excitatory circuits through which activation of nAChRs pr...
متن کاملATP Released by Astrocytes Mediates Glutamatergic Activity-Dependent Heterosynaptic Suppression
Extracellular ATP released from axons is known to assist activity-dependent signaling between neurons and Schwann cells in the peripheral nervous system. Here we report that ATP released from astrocytes as a result of neuronal activity can also modulate central synaptic transmission. In cultures of hippocampal neurons, endogenously released ATP tonically suppresses glutamatergic synapses via pr...
متن کاملDynamic inhibition of excitatory synaptic transmission by astrocyte-derived ATP in hippocampal cultures.
Originally ascribed passive roles in the CNS, astrocytes are now known to have an active role in the regulation of synaptic transmission. Neuronal activity can evoke Ca2+ transients in astrocytes, and Ca2+ transients in astrocytes can evoke changes in neuronal activity. The excitatory neurotransmitter glutamate has been shown to mediate such bidirectional communication between astrocytes and ne...
متن کاملRole of adenosine receptors and protein phosphatases in the reversal of pentylenetetrazol-induced potentiation phenomenon by theta pulse stimulation in the CA1 region of rat hippocampal slices
The effect of theta pulse stimulation (TPS) on pentylenetetrazol (PTZ)-induced long-term potentiation of population spikes (PS) was studied in the hippocampal CA1 in vitro. A transient PTZ application produced a long-lasting enhancement of PS amplitude. A 3-min episode of TPS delivered at a higher intensity produced complete reversal of the PTZ potentiation when delivered during the last minute...
متن کاملRole of adenosine receptors and protein phosphatases in the reversal of pentylenetetrazol-induced potentiation phenomenon by theta pulse stimulation in the CA1 region of rat hippocampal slices
The effect of theta pulse stimulation (TPS) on pentylenetetrazol (PTZ)-induced long-term potentiation of population spikes (PS) was studied in the hippocampal CA1 in vitro. A transient PTZ application produced a long-lasting enhancement of PS amplitude. A 3-min episode of TPS delivered at a higher intensity produced complete reversal of the PTZ potentiation when delivered during the last minute...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of pharmacology and experimental therapeutics
دوره 303 1 شماره
صفحات -
تاریخ انتشار 2002